82 research outputs found

    A new One-time Password Method

    Get PDF
    AbstractOne-Time Passwords (OTP) can provide complete protection of the login-time authentication mechanism against replay attacks. In this paper, we propose TSOTP: a new effective simple OTP method that generates a unique passcode for each use. The calculation uses both time stamps and sequence numbers. A two-factor authentication prototype for mobile phones using this method has been developed and has been used in practice for a year

    Animation Fidelity in Self-Avatars: Impact on User Performance and Sense of Agency

    Full text link
    The use of self-avatars is gaining popularity thanks to affordable VR headsets. Unfortunately, mainstream VR devices often use a small number of trackers and provide low-accuracy animations. Previous studies have shown that the Sense of Embodiment, and in particular the Sense of Agency, depends on the extent to which the avatar's movements mimic the user's movements. However, few works study such effect for tasks requiring a precise interaction with the environment, i.e., tasks that require accurate manipulation, precise foot stepping, or correct body poses. In these cases, users are likely to notice inconsistencies between their self-avatars and their actual pose. In this paper, we study the impact of the animation fidelity of the user avatar on a variety of tasks that focus on arm movement, leg movement and body posture. We compare three different animation techniques: two of them using Inverse Kinematics to reconstruct the pose from sparse input (6 trackers), and a third one using a professional motion capture system with 17 inertial sensors. We evaluate these animation techniques both quantitatively (completion time, unintentional collisions, pose accuracy) and qualitatively (Sense of Embodiment). Our results show that the animation quality affects the Sense of Embodiment. Inertial-based MoCap performs significantly better in mimicking body poses. Surprisingly, IK-based solutions using fewer sensors outperformed MoCap in tasks requiring accurate positioning, which we attribute to the higher latency and the positional drift that causes errors at the end-effectors, which are more noticeable in contact areas such as the feet.Comment: Accepted in IEEE VR 202

    Scattering Dynamics and Boundary States of a Non-Hermitian Dirac Equation

    Full text link
    We study a non-Hermitian variant of the (2+1)-dimensional Dirac wave equation, which hosts a real energy spectrum with pairwise-orthogonal eigenstates. In the spatially uniform case, the Hamiltonian's non-Hermitian symmetries allow its eigenstates to be mapped to a pair of Hermitian Dirac subsystems. When a wave is transmitted across an interface between two spatially uniform domains with different model parameters, an anomalous form of Klein tunneling can occur, whereby reflection is suppressed while the transmitted flux is substantially higher or lower than the incident flux. The interface can even function as a simultaneous laser and coherent perfect absorber. Remarkably, the violation of flux conservation occurs entirely at the interface, as no wave amplification or damping takes place in the bulk. Moreover, at energies within the Dirac mass gaps, the interface can support exponentially localized boundary states with real energies. These features of the continuum model can also be reproduced in non-Hermitian lattice models

    Combining motion matching and orientation prediction to animate avatars for consumer-grade VR devices

    Get PDF
    The animation of user avatars plays a crucial role in conveying their pose, gestures, and relative distances to virtual objects or other users. Self-avatar animation in immersive VR helps improve the user experience and provides a Sense of Embodiment. However, consumer-grade VR devices typically include at most three trackers, one at the Head Mounted Display (HMD), and two at the handheld VR controllers. Since the problem of reconstructing the user pose from such sparse data is ill-defined, especially for the lower body, the approach adopted by most VR games consists of assuming the body orientation matches that of the HMD, and applying animation blending and time-warping from a reduced set of animations. Unfortunately, this approach produces noticeable mismatches between user and avatar movements. In this work we present a new approach to animate user avatars that is suitable for current mainstream VR devices. First, we use a neural network to estimate the user's body orientation based on the tracking information from the HMD and the hand controllers. Then we use this orientation together with the velocity and rotation of the HMD to build a feature vector that feeds a Motion Matching algorithm. We built a MoCap database with animations of VR users wearing a HMD and used it to test our approach on both self-avatars and other users’ avatars. Our results show that our system can provide a large variety of lower body animations while correctly matching the user orientation, which in turn allows us to represent not only forward movements but also stepping in any direction.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 860768 (CLIPE project) and the Spanish Ministry of Science and Innovation (PID2021-122136OB-C21).Peer ReviewedPostprint (published version

    Animation fidelity in self-avatars: impact on user performance and sense of agency

    Get PDF
    The use of self-avatars is gaining popularity thanks to affordable VR headsets. Unfortunately, mainstream VR devices often use a small number of trackers and provide low-accuracy animations. Previous studies have shown that the Sense of Embodiment, and in particular the Sense of Agency, depends on the extent to which the avatar's movements mimic the user's movements. However, few works study such effect for tasks requiring a precise interaction with the environment, i.e., tasks that require accurate manipulation, precise foot stepping, or correct body poses. In these cases, users are likely to notice inconsistencies between their self-avatars and their actual pose. In this paper, we study the impact of the animation fidelity of the user avatar on a variety of tasks that focus on arm movement, leg movement and body posture. We compare three different animation techniques: two of them using Inverse Kinematics to reconstruct the pose from sparse input (6 trackers), and a third one using a professional motion capture system with 17 inertial sensors. We evaluate these animation techniques both quantitatively (completion time, unintentional collisions, pose accuracy) and qualitatively (Sense of Embodiment). Our results show that the animation quality affects the Sense of Embodiment. Inertial-based MoCap performs significantly better in mimicking body poses. Surprisingly, IK-based solutions using fewer sensors outperformed MoCap in tasks requiring accurate positioning, which we attribute to the higher latency and the positional drift that causes errors at the end-effectors, which are more noticeable in contact areas such as the feet.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 860768 (CLIPE project) and from MCIN/AEI/10.13039/501100011033/FEDER, UE (PID2021-122136OB-C21). Jose Luis Ponton was also funded by the Spanish Ministry of Universities (FPU21/01927).Peer ReviewedPostprint (author's final draft

    Multiphysics Structured Eddy Current and Thermography Defects Diagnostics System in Moving Mode

    Get PDF
    Eddy current testing (ET) and eddy current thermography (ECT) are both important non-destructive testing (NDT) methods that have been widely used in the field of conductive materials evaluation. Conventional ECT systems have often employed to test static specimens eventhough they are inefficient when the specimen is large. In addition, the requirement of high-power excitation sources tends to result in bulky detection systems. To mitigate these problems, a moving detection mode of multiphysics structured ET and ECT is proposed in which a novel L-shape ferrite magnetic yoke circumambulated with array coils is designed. The theoretical derivation model of the proposed method is developed which is shown to improve the detection efficiency without compromising the excitation current by ECT. The specimens can be speedily evaluated by scanning at a speed of 50-250 mm/s while reducing the power of the excitation current due to the supplement of ET. The unique design of the excitation-receiving structure has also enhanced the detectability of omnidirectional cracks. Moreover, it does not block the normal direction visual capture of the specimens. Both numerical simulations and experimental studies on different defects have been carried out and the obtained results have shown the reliability and detection efficiency of the proposed system

    Fertility Enhancement but Premature Ovarian Failure in esr1-Deficient Female Zebrafish

    Get PDF
    It is well established that estrogens regulate female reproduction through estrogen receptors (ERs) in the ovary. However, the precise physiological role of estrogen/ER signaling in reproduction processes remains poorly defined in zebrafish. In this study, we successfully generated an ERα (esr1) mutant line in zebrafish via transcription activator-like effectors nucleases (TALENs). It was found in the mutant females that the fertility was enhanced and the ovarian histology was normal at 90 days post-fertilization (dpf). However, the number of fertile females decreased with age. By 180 dpf, esr1 mutant females were infertile with degenerated ovaries, while the age-matched wild-type females were still fertile. Additionally, few large vitellogenic granules can be found in full grown (FG) follicles at 90 dpf and the expression of vtg genes were down-regulated at both 90 and 180 dpf in esr1 mutant zebrafish. Moreover, steroidogenesis pathway and mTOR signaling pathway were over-activated at 90 dpf, but declined prematurely in esr1 mutant zebrafish by 180 dpf. Collectively, the present study provides evidence that esr1 is fundamental for ovarian maintenance in zebrafish

    New Insights Into the Role of Follicle-Stimulating Hormone in Sex Differentiation of the Protogynous Orange-Spotted Grouper, Epinephelus coioides

    Get PDF
    Follicle-stimulating hormone (FSH) signaling is considered to be essential for early gametogenesis in teleosts, but its functional roles during sex differentiation are largely unknown. In this study, we investigated the effects of long-term and short-term FSH injection on sex differentiation in the protogynous orange-spotted grouper (Epinephelus coioides). Long-term FSH treatment initially promoted the formation of ovaries but subsequently induced a male fate. The expression of female pathway genes was initially increased but then decreased, whereas the expression of male pathway genes was up-regulated only during long-term FSH treatment. The genes related to the synthesis of sex steroid hormones, as well as serum 11-ketotestosterone and estradiol, were also up-regulated during long-term FSH treatment. Short-term FSH treatment activated genes in the female pathway (especially cyp19a1a) at low doses but caused inhibition at high doses. Genes in the male pathway were up-regulated by high concentrations of FSH over the short term. Finally, we found that low, but not high, concentrations of FSH treatment activated cyp19a1a promoter activities in human embryonic kidney (HEK) 293 cells. Overall, our data suggested that FSH may induce ovarian differentiation or a change to a male sex fate in the protogynous orange-spotted grouper, and that these processes occurred in an FSH concentration-dependent manner

    Efficient current-induced spin torques and field-free magnetization switching in a room-temperature van der Waals magnet

    Full text link
    The discovery of magnetism in van der Waals (vdW) materials has established unique building blocks for the research of emergent spintronic phenomena. In particular, owing to their intrinsically clean surface without dangling bonds, the vdW magnets hold the potential to construct a superior interface that allows for efficient electrical manipulation of magnetism. Despite several attempts in this direction, it usually requires a cryogenic condition and the assistance of external magnetic fields, which is detrimental to the real application. Here, we fabricate heterostructures based on Fe3GaTe2 flakes that possess room-temperature ferromagnetism with excellent perpendicular magnetic anisotropy. The current-driven non-reciprocal modulation of coercive fields reveals a high spin-torque efficiency in the Fe3GaTe2/Pt heterostructures, which further leads to a full magnetization switching by current. Moreover, we demonstrate the field-free magnetization switching resulting from out-of-plane polarized spin currents by asymmetric geometry design. Our work could expedite the development of efficient vdW spintronic logic, memory and neuromorphic computing devices
    • …
    corecore